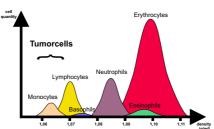
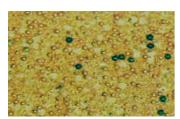


Gliapheresis for liquid biopsy and isolation of target specific molecules

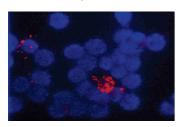

Dr. Ulrich Kübler, Dr. Jörn Schnepel Brain Tumor 2019, Berlin

The underlying cause of glioblastoma is the loss of controllability of normal glial cells and the formation of tumor stem cells in a molecular niche. The Labor-Praxisklinik Dr. Kübler & Partner GbR has a system available for isolation, quantification and molecular characterisation of these cells (EP1486787B1). After dissolution of epithelial cell layers GFAP expressing Cancer Stem Cells (CSCs) can be found in the bloodstream, which have been undergone epithelio mesenchymale transition (EMT) and which represent the heterogeneity of both the primary tumor and disseminated cells. Therefore, the cells change their cell-specific characteristics and thus gain migratory capability and invasiveness. They already circulate in the bloodstream before a primary tumour gets visible. The early detection of these cells is a revolution in prevention, diagnosis and treatment. [1-9, 14]

Gliapheresis


The Diagnostic Apheresis (gliapheresis) enables a quantitative extraction of metastasis initiating Cancer Stem Cells (MICs) from the bloodstream and their complete molecular-pathological characterization without any biopsy (PD-L1, c-Met, Oct-3/4, GFAP, EGFR, erb/B2, erb/B3, myc, ras, p53m, MDR, CD44v5/v6, VEGF, Akt/mTOR, IDO, Survivin, Urokinase). On the other hand it allows the isolation of precursor cells of the immune system.^{[1}

Detection


Aspecifically developed ELISA test (enzyme linked immuno-sorbent assay) as well as FISH techniques (fluorescence in situ hybridisation) provide a single cell detection and consequently a quantification. Furthermore an expression profile of the apheresis derived circulating tumor cells is created by determination of different biomarkers. Precursor cells of the immune system are cultivated and prepared for treatment.[7,14]

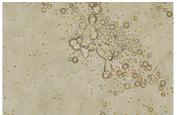
GFAP positive cells

Oct-3/4 positive cells

MET gene amplification

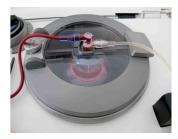
c-erb/B2 gene amplification

Labor-Praxisklinik GbR Dr. Kübler & Partner


Siebertstr. 6 81675 München

www.labor-praxisklinik.de info@labor-praxisklinik.de

Consequence


This cell-based liquid biopsy allows the isolation, quantification and molecular characterization of circulating tumor stem cells. The isolated cells can be used both for monitoring effects of therapy and as a source of immunogenic molecules for targetspecific immunotherapy.[15]

NK cells

Literatur

[1] Glioblastoma: therapeutic challenges, what lies ahead, Lima, F.R. et al., 2012, Biochim. Biophys. Acta, 1826(2), 338-349.

Glioblastoma multiforme: overview of current treatment and future perspectives, Anton, K. et al., 2012, Haematol. Oncol. Clin. North Am., 26(4), 825-853 ³New molecularly targeted therapies for glioblastoma multiforme, Polivka, J. et al., 2012, Anticancer Res., 32(7), 2935-2946.

EMT, cancer stem cells and drug resistance, emerging axis of evil, Shing, A., Settleman, J., Oncogene 2010, 29, 4741-4751.

p53 regulates epithelial mesenchymal transition and stem cell properties through modulating mi-RNAs, Chang, C., et al., Nature Cell Biology 2011, 13, 317-323 Cancer Stem Cells, Jordan, CT., Guzman, ML., Noble, M., N. Engl. J. Med. 2006 355;12, 1253-61.

Tc-MET expression level in primary colon cancer:a predictor of tumor invasion and lymph node metastases, Takeuchi, H. et al., Clin Cancer Res 2003, Vol.9,1480-1488. Tumor cells circulate in the blood of all major carcinomas, but not in healthy subjects or patients with nonmalignant diseases, Allard, W.J., et al, Clin Can Res. 2004, 10, 6897-6904

⁹The evidence for Cancer Stem Cells, Niederhuber, J., (NCI, Bethesda) 5th Int. H.F.C. Behr-Symposium 2008, DKFZ Heidelberg.

[®]Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, Gerlinger, M. *et al.*, 2012, N. Engl. J. Med., 366(10), 883-892.

Epithelial-mesenchymal transitions in development and disease, Thiery, JP., et al.

The epithelial-mesenchymal transition generates cells with properties of stem cells, Mani, SA., 2008, Cell 133, 704-715.
Transitions between epithelial and mesenchymal states: acquisition of malignant and

stem cell traits, Polyak, K., Weinberg, RA., 2009, Nat Rev Cancer 9, 265-273. ⁴Process for the *in vitro* diagnosis of a glioma or an astrocytoma and a

pharmaceutical mixture for treatment, Kübler, U., 2011, Eur. Patent EP1486787B1. Isolation and Characterization of Circulating Cancer Cells as Vaccine Candidates, Dr. Kübler GmbH, Cancer Vaccines 1996, New York.